1

拡張位相グラフ(EPG)の基礎 寺田康彦

筑波大学 数理物質系 物理工学域

http://www.bk.tsukuba.ac.jp/~mrlab/index.html

2018/9/7 第46回日本磁気共鳴医学会大会 教育講演基礎1

- 1. EPG(拡張位相グラフ)は1ボクセル・シミュレー ションである
- 2. マルチエコーの強度を簡単に計算できる
- 3. エコーの起源を理解できる
- 4. 視覚的にも理解しやすい

参考文献 [1] M. Weigel, Extended Phase Graphs: Dephasing, RF Pulses, and Echoes - Pure and Simple, JMRI, 41:266-295 (2015)

Magnetization distributions of the CPMG sequence from unknown time points :

Bloch simulation

3

Weigel論文より 引用

- 「エコー」はどこに現れる?
- ・「エコー」の<mark>種類</mark>は? スピンエコー?STE?
- ・「エコー」の<mark>強度</mark>は?

EPGとは?

用語の整理:ISOCHROMATとは?

spin isochromat

spin isochromats

同じ位相をもつスピン の集合体

便宜上「単一スピン」 と呼ぶことにする ※本当は「単一」ではないことに注意 spin isochromatの集合体

暗黙の了解

- 1. ボクセル内には多数のスピンが存在
- 2. ボクセル内は磁場が不均一

(線形近似=background gradient)

「エコー」という現象を考えるのに必須

多数あるスピンのうち ある単一スピン(spin isochromat)に注目した時の 横磁化の位相の時間変化を表す

EPGとは?

EPGとは?

まず横磁化を考える

2π/voxel

0

 $4\pi/voxel$

 $6\pi/voxel$

-2π/voxel

0

-4π/voxel

 $-6\pi/voxel$

左ねじ螺旋をどう表現する?

表現法に冗長性がある

UNIV. OF TSUKUBA 17

フーリエ変換:多数の螺旋の重ね合わせ

左ねじ

右ねじ

任意の横磁化分布は すべての螺旋の重ね合わせ

UNIV. OF TSUKUBA 19

これまでのまとめ

- ・EPGでは、ボクセル内の多数スピン(spin isochromats)を対象とする
 - dephasing、rephasingの程度を
 「k=らせんのねじれ具合」で表す
 - ・核磁化分布=多数の螺旋の重ね合わせ
 →フーリエ変換

・
$$k = \frac{2\pi \times 整数}{\text{voxel size}}$$
とすると便利である

RF PULSEの働き:古典的位相グラブ²¹
RF PULSEの働き:古典的位相グラブ²¹
RF PULSEの働き:古典的位相グラブ²¹

$$\alpha_{\phi} \stackrel{(all\phi)}{_{\mathcal{J}}\mathcal{J}}\mathcal{I}$$

 $\left(\begin{pmatrix} M_{x} \\ M_{y} \\ M_{z} \end{pmatrix}^{+} = R_{\phi}(\alpha) \begin{pmatrix} M_{x} \\ M_{y} \\ M_{z} \end{pmatrix}^{-}$
 $R_{\phi}(\alpha) = R_{z}(\phi)R_{x}(\alpha)R_{-z}(\phi)$
 $R_{z}(\phi) = \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix}$
 $R_{x}(\alpha) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\alpha & -\sin\alpha \\ 0 & \sin\alpha & \cos\alpha \end{pmatrix}$
KWALORF/CULZINE

RF PULSEの働き:古典的位相グラブ²²
RF / いレス ニ ハードノ いレス近似

$$\begin{pmatrix} M_x \\ M_y \\ M_z \end{pmatrix}^+ = R_{\phi}(\alpha) \begin{pmatrix} M_x \\ M_y \\ M_z \end{pmatrix}^-$$

基底変換
 $\begin{pmatrix} M_+ \\ M_- \\ M_z \end{pmatrix} = \begin{pmatrix} 1 & i & 0 \\ 1 & -i & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} M_x \\ M_y \\ M_z \end{pmatrix}$
複素表現
 $\begin{pmatrix} M_+ \\ M_- \\ M_z \end{pmatrix}^+ = \begin{pmatrix} \cos^2 \frac{\alpha}{2} & e^{i\phi} \sin^2 \frac{\alpha}{2} & -ie^{i\phi} \sin \alpha \\ e^{-i\phi} \sin^2 \frac{\alpha}{2} & \cos^2 \frac{\alpha}{2} & ie^{i\phi} \sin \alpha \\ -\frac{i}{2}e^{i\phi} \sin \alpha & \frac{i}{2}e^{i\phi} \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} M_+ \\ M_- \\ M_z \end{pmatrix}^- \equiv T \begin{pmatrix} M_+ \\ M_- \\ M_z \end{pmatrix}^-$

RF PULSEの働き:古典的位相グラブ 24

2反転

RF pulseには三つの働きがある

そのまま (0^opulse-like) 反転(180^opulse-like)

横磁化⇒縦磁化(90°pulse-like)

RF PULSEの働き:古典的位相グラップ

RF pulseには三つの働きがある

そのまま or 横磁化生成 (0°pulse-like) 反転(180°pulse-like)

横磁化⇔縦磁化(90°pulse-like)

数学的に三つに分かれるのは分かるが... どうもしっくりこない 特に「反転」作用について

そのまま or 横磁化生成 (0^opulse-like) 反転(180^opulse-like)

横磁化⇔縦磁化(90°pulse-like)

例えば
$$\phi = 0, \alpha = 90^{\circ}$$
の場合
$$\begin{pmatrix}F_k\\F_{-k}^*\\Z_k\end{pmatrix}^+ = \begin{pmatrix}0.5 & -0.5 & 1\\-0.5 & 0.5 & 1\\-0.5 & -0.5 & 0\end{pmatrix}\begin{pmatrix}F_k\\F_{-k}^*\\Z_k\end{pmatrix}^-$$

90ºパルスでさえ反転作用がある

そのまま or 横磁化生成 (0°pulse-like) 反転(180°pulse-like)

横磁化⇔縦磁化(90°pulse-like)

単一のスピンでは理解できないが、 多数のスピンを考えると理解できる

そのまま or 横磁化生成 (0°pulse-like) 反転(180°pulse-like)

横磁化⇔縦磁化(90°pulse-like)

RFパルス=同じ|k|どうしのフーリエ成分を混合する

EPG "STATES"

- ・行列で管理
- $\Omega = \begin{pmatrix} F_0 & F_1 & F_2 & F_3 & \cdots \\ F_0^* & F_{-1}^* & F_{-2}^* & F_{-3}^* & \cdots \\ Z_0 & Z_1 & Z_2 & Z_3 & \cdots \end{pmatrix} \begin{bmatrix} A \\ B \\ C \\ C \end{bmatrix}$ 右ねじ螺旋 縦磁化
- ・RF pulseやGradient、緩和等の効果も行列で表現

dephasing

"複素共役"をとることを忘れずに

 $S(+1): F_k \to F_{k+1}$ $Z_k \rightarrow Z_k$

dephasing

EPG "STATES"

 $S(+1): F_k \to F_{k+1}$ $Z_k \to Z_k$

$$\Omega^{+} = S(+1)\Omega^{-}$$

$$= \begin{pmatrix} F_{-1} & F_{0} & F_{1} & F_{2} & \cdots \\ F_{-1}^{*} & F_{-2}^{*} & F_{-3}^{*} & F_{-4}^{*} & \cdots \\ Z_{0} & Z_{1} & Z_{2} & Z_{3} & \cdots \end{pmatrix}$$

rephasing

EPG "STATES"

・右ねじ

、左ねじ

 $S(-1): F_k \to F_{k-1}$ $Z_k \rightarrow Z_k$. . .

RF pulse

EPG "STATES"

RF pulse

EPG "STATES"

$$T = \begin{pmatrix} \cos^2 \frac{\alpha}{2} & e^{i\phi} \sin^2 \frac{\alpha}{2} & -ie^{i\phi} \sin \alpha \\ e^{-i\phi} \sin^2 \frac{\alpha}{2} & \cos^2 \frac{\alpha}{2} & ie^{i\phi} \sin \alpha \\ -\frac{i}{2} e^{i\phi} \sin \alpha & \frac{i}{2} e^{i\phi} \sin \alpha & \cos \alpha \end{pmatrix}$$

 $\Omega^+ = T\Omega^-$

EPG "STATES"

$$E(\tau, T_1, T_2) = \begin{pmatrix} E_2 & 0 & 0\\ 0 & E_2 & 0\\ 0 & 0 & E_1 \end{pmatrix} \text{ for } k \neq 0$$
$$E_1 = \exp\left(-\frac{\tau}{T_1}\right), E_2 = \exp\left(-\frac{\tau}{T_2}\right)$$
$$\binom{F_0}{F_0^*}_{T_0^*} = E\binom{F_0}{F_0^*}_{T_0^*} + \binom{0}{M_0(1 - E_1)} \text{ for } k = 0$$

EPG "STATES"

CPMG (理想)

このシーケンスの場合 |*k*| ≥ 2の項はすべてゼロ

 $\Omega = \begin{pmatrix} F_0 & F_1 & 0 & \cdots \\ F_0^* & F_{-1}^* & 0 & \cdots \\ Z_0 & Z_1 & 0 & \cdots \end{pmatrix}$ $\rightarrow \begin{pmatrix} F_0 & F_1 \\ F_0^* & F_{-1}^* \\ Z_0 & Z_1 \end{pmatrix}$

"グラフ"にしてみる

EPG-GRAPHING

縦軸は k or "states"

EPG-GRAPHING

古典的PGとEPGの違い

(spin isochromat)

- ・縦軸(はk or "states"
- ・多数スピン

(spin isochromats)

EPG-CPMGシーケンス

59

UNIV. OF TSUKUBA

MULTI ECHO

t

t

MULTI ECHO

MULTI ECHO

t

t

t

・エコーpath: (primary) direct SE: T2 weighting

• $\Box \Box$ - path : 1st STE + SE : T1 + T2 weighting

(アルスると純磁化と検磁化した後9 るので下山) 例) $E(\tau)S_+S_+S_-T = S_+E(\tau)S_+S_-T = S_+S_+E(\tau)S_-T = S_+S_+S_-E(\tau)T$ $E(\tau)S_+S_+S_-T \neq E(2\tau)(S_+S_+S_-T)(S_+S_+S_-T)$

→間にTが入らなければどこにいれてもOK (Tが入ると縦磁化と横磁化が交換するので不可)

・E演算子をどこに入れるか?

緩和あり $T_1 = 1$ s, $T_2 = 100$ ms, TR = 30ms, TE = 20ms

$$T_{30x} = \begin{pmatrix} 0.93 & 0.07 & -0.50i \\ 0.07 & 0.93 & 0.50i \\ -0.25i & 0.25i & 0.87 \end{pmatrix}$$

FASI GRE (FISP/GRASS/FFE/FASI)

$$30^{\circ}x$$
 τ
 $30^{\circ}x$
 τ

t

これまでのまとめ2

- (M₊, M₋, M_z)のフーリエ成分= "states" (F₊, F₋*, Z)
- ・statesをまとめて行列Ωで表現する
- エコー強度などの計算は行列演算で行う
- ・RF pulse = T演算子
- Dephasing, rephrasing = S(+1), S(-1)演算子
- ・緩和 = *E*演算子
- エコーのpathや組成を知りたいときはグラフが有効 ・EPG:縦軸はk or "states"

UNIV. OF TSUKUBA 88

Kの値について

■ エコー強度などの計算は行列演算で行う

Kの値について

■ エコー強度などの計算は行列演算で行う

RF pulse = T演算子
 Dephasing, rephrasing = S(+1), S(-1)演算子
 緩和 = E演算子

 ・ 緩和 = E演算子

 ・ 拡散
 ・ 拡散
 ・ 流れ
 *k*の値に依存する

プロトンが移動する現象

$$D(\tau) = \begin{pmatrix} \exp(-b_{\tau}^{T}D) & 0 & 0 \\ 0 & \exp(-b_{\tau}^{T}D) & 0 \\ 0 & 0 & \exp(-b_{\tau}^{L}D) \end{pmatrix}$$
$$b_{\tau}^{T} = (k_{1} + k_{2})^{2} \frac{\tau}{4} + (k_{1} - k_{2})^{2} \frac{\tau}{4} \\ b_{\tau}^{L} = k_{1}^{2}\tau \end{pmatrix} k \mathcal{O}^{I}_{L} (C$$

正確なkの値を使ってEPG計算を行う必要あり

FLOW

連続Kへの拡張

$$M_{+}(\ell) = M_{x} + iM_{y} = \int_{V} F_{+}(k)e^{ik\ell}d\ell$$
$$M_{-}(\ell) = M_{x} - iM_{y} = \int_{V} F_{-}(k)e^{ik\ell}d\ell = \int_{V} (F_{+}(-k))^{*}e^{ik\ell}d\ell$$
$$F_{-}(k) = (F_{+}(-k))^{*}$$

$$\begin{pmatrix} F_{+}(k) \\ (F_{+}(-k))^{*} \\ Z(k) \end{pmatrix}^{+} = T \begin{pmatrix} F_{+}(k) \\ (F_{+}(-k))^{*} \\ Z(k) \end{pmatrix}^{-}$$

または
$$\begin{pmatrix} F_{+}(k) \\ F_{-}(k) \\ Z(k) \end{pmatrix}^{+} = T \begin{pmatrix} F_{+}(k) \\ F_{-}(k) \\ Z(k) \end{pmatrix}^{-}$$
Tは離散kの場合と同じ

PYTHON CODING

https://git	hub.com/mrlab-tsukuba/mri-master/tree/master/EPG	
EPG class	class EPG:	
	definit(self, NumOfColumns, m0=1, t1=0.5, t2=0.1):	
	self.NumOfColumns = NumOfColumns #CS matrixの行数	
	self.setParams(m0, t1, t2)	
┍┍パリフ湾笛	def op T(self,Tmatrix):	
КГ/ \/レヘ/供昇	self.CSm = self.CS.copy()	
	self.CS = np.dot(Tmatrix, self.CSm)	
シフト演算	def op_S1(self): #shift operator (Δk=1)	
	self.CSm = self.CS.copy()	
	N = self.NumOfColumns	
	#check	
	if self.CS[0][N-1] != 0:	
	print('number of colums for CS matrix is not sufficient!!!')	
	self.CS[1][N-1] = np.complex(0,0)	
	for i in range(N-1):	
	self.CS[1][i] = self.CSm[1][i+1]	
	self.CS[0][0] = np.conj(self.CS[1][0])	
	for i in range(1,N):	
	self.CS[0][i] = self.CSm[0][i-1]	

PYTHON CODING https://github.com/mrlab-tsukuba/mri-master/tree/master/EPG

```
def FISP():
  m0 = 1
  t1 = 0.5
  t_{2}=0.1
  ETL=100
  FA=30
  TR=30e-3
  epg = EPG(ETL+1)
  epg.setParams(m0, t1, t2)
  RF1 = epg.gen_Tmatrix(0, FA/180*np.pi) #90y
  epg.t_echoPeak = np.zeros((ETL), dtype = complex)
  tau = TR/3
  #start
  for i in range(ETL):
     epg.op_T(RF1)
     epg.op_Gx(tau, -1)
     epg.op_Gx(tau, 1)
     epg.t_echoPeak[i] = epg.op_AD()
     epg.op_Gx(tau, 1)
  epg.display_results()
```

PYTHON CODING https://github.com/mrlab-tsukuba/mri-master/tree/master/EPG

まとめ

1. EPGの定義

・ EPGは、RFパルスの働きを記述する古典的位相グラフに、核磁化分布の フーリエ変換の概念を加えたものである

2. Kの導入

- ・横磁化分布の螺旋のねじれ具合をkで定量化
- dephasingとrephasingをkの増減で表現
- 3. "states"の導入
 - ・核磁化分布のフーリエ成分 F_k , F_{-k}^* , Z_k = "states"
 - ・"states"をまとめて行列Ωで管理

4. "states" Ωの経時変化の計算

・RF pulse T、Gradient S、緩和E、拡散D、流れJ→行列演算子

<u>5.</u> グラフ

- ・縦軸(はk or "states"
- ・エコーのpathや組成
- <mark>6.</mark> 実例、python code